US009106581B1

a2 United States Patent

MacKkie et al.

US 9,106,581 B1
*Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

PACKET FORWARDING PATH
PROGRAMMING USING A HIGH-LEVEL
DESCRIPTION LANGUAGE

Applicant: Juniper Networks, Inc., Sunnyvale, CA
(US)

Scott Mackie, Santa Cruz, CA (US);
James Washburn, Palo Alto, CA (US);
Nitin Kumar, Fremont, CA (US);
Sandeep Bajaj, San Ramon, CA (US)

Inventors:

Juniper Networks, Inc., Sunnyvale, CA
us)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Notice:

Appl. No.: 14/456,928

Filed: Aug. 11,2014

Related U.S. Application Data

Continuation of application No. 13/194,571, filed on
Jul. 29, 2011, now Pat. No. 8,806,058.

Int. Cl1.

GO6F 15/17 (2006.01)

HO4L 12/721 (2013.01)

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 45/44 (2013.01); HO4L 29/06

(2013.01); HO4L 29/08072 (2013.01)

(58) Field of Classification Search
USPC 709/200, 203, 230, 232, 238-242
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,215,637 Bl 5/2007 Ferguson et al.
7,649,904 Bl 1/2010 Ghosh et al.
7,990,993 Bl 8/2011 Ghosh et al.
8,806,058 Bl 8/2014 Mackie et al.
OTHER PUBLICATIONS

Prosecution History from U.S. Appl. No. 13/194,571, dated Oct. 17,
2011 through Apr. 14, 2014, 344 pp.

Primary Examiner — Michael Thier
Assistant Examiner — Brian Cox
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

In general, this disclosure describes a high-level forwarding
path description language (FPDL) for describing internal for-
warding paths within a network device. The FPDL enables
developers to create a template that describes a section of an
internal forwarding path within the forwarding plane of a
network device. The FPDL provides syntactical elements for
specifying the allocation of forwarding path structures as well
as enabling the run-time construction of internal forwarding
paths to interconnect the forwarding path structures in a man-
ner specific to packet, packet flow, and/or interface properties,
for example. In conjunction with late binding techniques,
whereby the control plane of the network device provides
arguments to template parameters that drive allocation by the
packet forwarding engines of forwarding path structures
specified by the FPDL, the techniques provide control plane
processes a unified interface with which to manage the opera-
tion of the packet forwarding engines.

20 Claims, 10 Drawing Sheets

NETWORK DEVICE
10
CONTROL UNIT
12
DAEMON DAEMON
(1 1]
R 14N
AN
A FPB
INTERFACE PRO?-&RAMS
16
PN
* FZB
—* IFC PFE
«— 22 204 o
—» IFC FPBS
«— 22 24A
. SWITCH
. FABRIC
. 26
— Fc PFE
— 2 20N
—l FFC FPBS
«— 22 24N

U.S. Patent Aug. 11, 2015 Sheet 1 of 10 US 9,106,581 B1
NETWORK DEVICE
10
CONTROL UNIT
12
DAEMON DAEMON
\\%\./
\ & FPB
INTERFACE PROGRAMS
18
16
7
25| 27
¢ /‘28
— IFC PFE
«—] 22 20A
«——»
—» IFC FPBS
«—] 22 24A
. SWITCH
'y FABRIC
° | 26
— IFC PFE
«—] 22 20N
«—»
—>» IFC FPBS
«—] 22 24N

FIG. 1

U.S. Patent Aug. 11, 2015 Sheet 2 of 10 US 9,106,581 B1

CONTROL UNIT
12
e SR f]”
RPD SNMP | USER
00 , SPACE
34 36
I 40
_________________ 'y
CONTROL
PLANE
FPB FPDL FPDL 78A
INTERFACE | INTERFACE |« PROGRAMS
44 46 48
Y Y
/ y KERNEL
PROCESSOR | | | PFE INTERFACE 43
\ 54
I W)
y
| ' 20N
| Y
PACKET FORWARDING ENGINE /' 20B
20A
PFE MICRO- FPB-PFE
PROCESSOR INTERFACE COMSF:LER
62 64 — “| pata
1 PLANE
ASICS 728
68 (FORWARDING PATH)
72
70M
P/ _ [
| I | 2
l_ » —
> | KEY ENGINE ||
70] | PRIMITIVES
INBOUND | | = 706 18 OUTBOUND
TRAFFIC L) TRAFFIC

FIG. 2

U.S. Patent Aug. 11, 2015 Sheet 3 of 10 US 9,106,581 B1

FPDL PROGRAM INTERFACE
PROGRAMS
101A
48 |/ | L____ —— 1
PROGRAM [ARGUMENTS)
FPDL {,_80 100A 102)
QETERFACE e [INST. VARS.)
828 o 104)
5l , /
1 BLOCKr, N
o 106A ARGUMENTS
— =
som’ (INST.VARS.)
18
(" FUNCTIONS)
109
(STATEMENTS)
1o
(" CONDITIONALS)
12
\ J
°
°
°
BLOCK
106N
PROGRAM
{1008 PROGRAM INTERFACE
- 101B
°
4
°
PROGRAM
.| 100M PROGRAM INTERFACE
| 101M

FIG.3

US 9,106,581 B1

Sheet 4 of 10

Aug. 11,2015

U.S. Patent

- 7]
JOV4NIALNI
¥3TIdINOD 24d-9d4

-

gZ8\
vz

JOV4HALNI
1ad4d

ass | goe
\~|souv|
* |e—
088 [506
\.|souv
.]
g88 || 906 o | ww
.| souv e 1/a0s
® [— ®
/vo8
“““““““““ . |/
ves [vos /
_|souv ve Vv
5 JOVANILNI
ad4
_||ﬁ|J
| v
| SNOW3va |
- — 1

¥ "'Old

US 9,106,581 B1

Sheet 5 of 10

Aug. 11, 2015

U.S. Patent

x
..................... j=e l—l—xm mn—\
(r N)
| I auvosia
L] el
| W 431Nnoo Je-(uoNi) NoiLov
1+ 1Inv43a)
7 =)
; el
A ¥31NN0D e -uoni) NOLLOY,
s —
¥aINNOD - woni) ZEF
P WaLI
eeL—17 ™ ~
[——
pese 14X
L dN)00T)
8el -
e--{ "HONI)}/ 92t
L %0018
S —- » waINnoo vel
SEETTT T
............. »[inawnowv | /%%
8L
Y490

G 'Old

U.S. Patent Aug. 11, 2015 Sheet 6 of 10 US 9,106,581 B1

FIG. 6 FPB FPDL
INTERFACE INTERFACE
44 46
RPD R
ﬂ = S —
T 86A[ARGS ~ 82A
: 90A | 8sA
CONTROL
PLANE
78A
DATA
PLANE
8B
4 ™
A 4
LOOKUP JTEMS ACTIONS
»[NH
M default 133)A !
143 146A — » NH » nextfpri— >
—N—NHL NH = 150
v ; 1338 148A
124 10 |----¢ D)
146B
144A
12 ..o NH
133C
1448 15 S p discard
146C 137
144C)
) NH 148B
122 133D
)
146D
FORWARDING PATH BLOCK
140
FORWARDING PATH
72

U.S. Patent

Aug. 11, 2015 Sheet 7 of 10 US 9,106,581 B1
------ »[NH
default 133)A
143 146A p NH |—
NA 135
NH ;-=---» 133B 123/_\
10 frd)
146B
144A 12 NE
----- »
aud Ly > [oxtfpr >
15 S »|discard —
146C 137
144C N)
3 NH 1488
122 133D
)
146D
U — k150A
» 124 GLOBAL |
- - - - - - - - - - — —/ — f150B
------ »[NH
default J---+-- 13‘?‘
143 146A » NH |—
NH 135
NH r=--» 133B 128A
10 -t D]
vd 1468
144A/ 12 . NH
e
1aad 133G _ J>
15 _3 pl discard [—
/ 146C 137
144C .)
S > NH 1488
122 133D
)
146D

FIG.7

U.S. Patent Aug.

11, 2015

Sheet 8 of 10 US 9,106,581 B1

160

PROGRAM

162f ARGUMENT

164/— RATE LIMITER

(BLOCK
166

.

(RATE-LIMIT
168

[LIMITER

170

ACTION
172A

ACTION
172B

174

[DEFAULT ACTION

)

FIG. 8A

J

176 EXIT

J

STAGE D
182A

FALSE

STAGE

182B

FALSE 5174

-\1 64

TRUE

Ry A

TRUE

S ~—172B

FORWARDING PATH BLOCK

180

FORWARDING PATH

72

FIG. 8B

U.S. Patent Aug. 11, 2015 Sheet 9 of 10 US 9,106,581 B1

/-200
IDENTIFY FPDL PROGRAM AND
CREATE ARGUMENTS
l /-202

CREATE FORWARDING PATH BLOCK
DESCRIPTION STRUCTURE

l s 204

SEND FPB DESCRIPTION STRUCTURE
AND FPDL DESCRIPTION STRUCTURE
TO PFE

l 206
COMPILE PROGRAM

ACCORDING TO ARGUMENTS
TO GENERATE FPB

l /-208

INSTALL FPB TO FORWARDING PATH

FIG.9

U.S. Patent Aug. 11, 2015 Sheet 10 of 10 US 9,106,581 B1

f-220
IDENTIFY FORWARDING PATH BLOCK

’ /-222

IDENTIFY PRIMITIVE IN THE FPB

CONFIGURATION

4 (224

ADD ITEM TO PRIMITIVE

v (226

BIND ITEM TO ACTION OF THE FPB

EXECUTE FORWARDING PATH BLOCK
ACTION TO PROCESS PACKETS
HAVING PROPERTY VALUE
OF THE ITEM

EXECUTION

FIG. 10

US 9,106,581 B1

1
PACKET FORWARDING PATH
PROGRAMMING USING A HIGH-LEVEL
DESCRIPTION LANGUAGE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/194,571, filed Jul. 29, 2011, the entire content of
which is incorporated herein by reference.

TECHNICAL FIELD

The invention relates to packet-based computer networks
and, more particularly, to forwarding packets within com-
puter networks.

BACKGROUND

A computer network is a collection of interconnected com-
puting devices that can exchange data and share resources.
Example network devices include layer two devices that oper-
ate within the second layer of the Open Systems Interconnec-
tion (OS]) reference model, i.e., the data link layer, and layer
three devices that operate within the third layer of the OSI
reference model, i.e., the network layer. Network devices
within computer networks often include a control unit that
provides control plane functionality for the network device
and forwarding components for routing or switching data
units. In some cases, for example, a network device may
include a plurality of packet forwarding engines (PFEs) and a
switch fabric that collectively provide a forwarding plane for
forwarding network traffic.

The control plane functions provided by the control unit
include storing network topologies in the form of a routing
information base (RIB), executing routing protocols to com-
municate with peer routing devices to maintain and update the
RIB, and providing a management interface to allow user
access and configuration of the network device. The control
unit maintains routing information that represents the overall
topology of the network and defines routes to destination
prefixes within the network.

The control unit derives a forwarding information base
(FIB) that includes a number of forwarding structures gener-
ated by the control unit in accordance with the routing infor-
mation and control information. The control unit installs the
forwarding structures within the data plane to programmati-
cally configure the forwarding components. The data and
instructions that constitute the forwarding structures define
an internal forwarding path for each incoming packet
received by the network device. For example, to generate a
route table lookup forwarding structure, the control unit
selects routes defined by the network topology and maps
packet key information (e.g., destination information and
other select information from a packet header) to one or more
specific next hop network devices and ultimately to one or
more specific output interfaces of interface cards of the net-
work device. In some cases, the control unit may install the
forwarding structures into each of the PFEs to update the FIB
within each of the PFEs and control traffic forwarding within
the data plane. Bifurcating control and data plane functional-
ity allows the FIB in each of PFEs to be updated without
degrading packet forwarding performance of the network
device.

SUMMARY

In general, the disclosure specifies techniques for describ-
ing internal forwarding paths within a network device using a

10

15

20

40

45

65

2

high-level forwarding path description language. The for-
warding path description language enables developers to cre-
ate a template that describes a section of an internal forward-
ing path within the forwarding plane of'a network device. The
forwarding path description language provides syntactical
elements for creating the template in a form that specifies the
allocation of forwarding path structures as well as enables the
run-time construction of internal forwarding paths to inter-
connect the forwarding path structures in a manner specific to
packet, packet flow, and/or interface properties, for example.
In conjunction with late binding techniques, whereby the
control plane of the network device provides arguments to
parameters within the template that drive allocation by the
packet forwarding engines of forwarding path structures
specified by the high-level description language, the tech-
niques provide control plane processes a unified interface
with which to manage the operation of the packet forwarding
engines.

The syntactical elements of the forwarding path descrip-
tion language may include specialized variables to reference
instantiated forwarding path structures, built-in constructor
functions for particular forwarding path structure types, and
argument variables to define interfaces for programs that
conform to the language. A program lookup statement causes
the forwarding component within the data place (e.g., a
packet forwarding engine) to mark and generate a place-
holder for a forwarding path lookup for alookup structure that
is populated at run-time by operation of control plane pro-
cesses with items bound to actions specified by the program.
A program includes one or more code blocks that contain
variable declarations, statements, and conditions, for
example, to define the program logic for instantiation in the
internal forwarding path and execution by a PFE hardware
engine or other forwarding component. Program code blocks
may be internally referenced by the forwarding component
and allow developers to specify execution flow for the pro-
gram in the forwarding component operating environment,
which provides a limited calling context.

The described techniques may be useful in advanced
devices that bifurcate control and forwarding plane function-
ality. In such devices, the control plane determines the opera-
tions of the forwarding plane applied to received packets. As
a result, control plane processes manage the allocation of
forwarding path structures and drive the construction of the
internal forwarding path in accordance with data structures,
such as route tables, derived by operation of the control plane
processes. However, the packet forwarding engines translate
directives from the control plane to generate the forwarding
paths, and hardware engines of the packet forwarding engines
perform lookups and otherwise execute the forwarding path
to apply services to received packets.

The described techniques may provide one or more advan-
tages. For example, the syntax of the forwarding path descrip-
tion language, which enables compile-time and run-time con-
figurability of programs and program operation, may enable
developers that use the language to both manage allocation of
forwarding path structures and drive the construction of the
forwarding path by control plane processes at a high level. As
a result, the forwarding path description language allows
developers to combine run-time lookup data management
with already compiled programs written using the language,
thus providing a single interface with which to construct the
forwarding paths. In addition, the forwarding components
may bind data received from the control plane to programs
already instantiated within the forwarding component to add
new features to the forwarding path. As a result, the tech-
niques may enable separation between compiled programs

US 9,106,581 B1

3

and lookup data, which may mitigate additional compilation
of the programs because of the mixed instruction/data archi-
tecture of modern packet forwarding engines. Pre-compile
directives provided for by the forwarding path description
language allow programs code sections to be conditionally
included according to control plane directives, which may
reduce the number of permutations of a program required for
different hardware. The forwarding path description lan-
guage additionally includes syntactical elements that may
enable developers to overcome limitations of conventional
high-level programming languages with respect to particular
characteristics of the underlying packet forwarding engine
architecture, such as limited provision for a variable infra-
structure and limited support for call/return program flow.

In one embodiment, the invention is directed to a method
comprising sending program text for a program that conforms
to a general-purpose high-level forwarding path description
language (FPDL) from a control unit of a network device to a
forwarding component of the network device. The method
also comprises compiling the program text with the forward-
ing component to a platform-independent intermediate rep-
resentation, and sending program arguments for the program
from the control unit to the forwarding component. The
method also includes compiling the intermediate representa-
tion with the forwarding component using the program argu-
ments to generate a forwarding path block having one or more
forwarding structures for execution by the forwarding com-
ponent to process packets. The method further comprises
installing the forwarding path block to an internal packet
forwarding path of the forwarding component, receiving a
packet with the forwarding component, and processing the
received packet by executing the forwarding path block.

In another embodiment, the invention is directed to a
method comprising generating program text for a program
that conforms to a high-level forwarding path description
language (FPDL) syntax and describes an internal packet
forwarding path for a network device. The method also com-
prises defining a lookup primitive for the network device in
the program text and generating a lookup statement in the
program text that conforms to the FPDL syntax, keys the
lookup primitive to a packet property, and defines one or more
actions for execution upon matching a value for the packet
property to an item added to the lookup primitive.

In another embodiment, the invention is directed a network
device comprising a forwarding component comprising an
interface card that receives a packet, a compiler, a program-
ming interface, a key engine, and an internal packet forward-
ing path comprising programmable, executable microcode
that determines processing of the packet. The network device
also comprises a control unit comprising a computer-readable
storage medium that stores a program that conforms to a
general-purpose high-level forwarding path description lan-
guage (FPDL); and a forwarding component interface that
sends program text for the program to the forwarding com-
ponent, wherein the forwarding component interface sends
program arguments for the program to the forwarding com-
ponent, wherein the programming interface receives the pro-
gram text and program arguments, wherein the compiler
compiles the program text to a platform-independent inter-
mediate representation and then compiles the intermediate
representation using the program arguments to generate a
forwarding path block having one or more forwarding struc-
tures for execution by the forwarding component to process
the packet, wherein the programming interface installs the
forwarding path block to the internal packet forwarding path
of the forwarding component, and wherein the key engine
processes the packet by executing the forwarding path block.

10

15

20

25

30

35

40

45

50

55

60

65

4

In another embodiment, the invention is directed to non-
transitory computer-readable medium containing instruc-
tions. The instructions cause one or more programmable pro-
cessors to send program text for a program that conforms to a
high-level forwarding path description language (FPDL)
from a control unit of a network device to a forwarding
component of the network device. The instructions also cause
the programmable processors to send program arguments for
the program from the control unit to the forwarding compo-
nent. The instructions also cause the programmable proces-
sors to compile the program text using the program arguments
to generate a forwarding path block having one or more
forwarding structures for execution by the forwarding com-
ponent to process packets. The instructions also cause the
programmable processors to install the forwarding path block
to an internal packet forwarding path of the forwarding com-
ponent, receive a packet with the forwarding component, and
process the received packet by executing the forwarding path
block.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example network
device that includes and executes programs written in a high-
level forwarding path description language (FPDL) in accor-
dance with principles described in this disclosure.

FIG. 2 is a block diagram illustrating an example embodi-
ment of the network device of FIG. 1 in further detail.

FIG. 3 is a block diagram illustrating an example FPDL
interface for managing FPDL programs using the techniques
described herein.

FIG. 4 is a block diagram illustrating FPB interface for
creating forwarding structures in a forwarding path of the
network device using the techniques described herein.

FIG. 5 is a block diagram illustrating an example program
that conforms to a high-level forwarding path description
language that accords with the principles of this disclosure.

FIG. 6 is a block diagram illustrating an example forward-
ing structure installed to a forwarding path of a network
device using unified forwarding structure installation and
configuration techniques described in this disclosure.

FIG. 7 is a block diagram illustrating example forwarding
structures having installation variables of diverse scope in
accordance with the described techniques.

FIG. 8A is a block diagram illustrating an example pro-
gram that conforms to a high-level forwarding path descrip-
tion language that accords with the principles of this disclo-
sure.

FIG. 8B is a block diagram illustrating an example for-
warding structure that is an instance of an FPDL program.

FIG. 91s aflowchart illustrating an example mode of opera-
tion for a network device to create forwarding structures
using techniques described in this disclosure.

FIG. 10 is a flowchart illustrating an example mode of
operation for a network device to populate a lookup primitive
with items using techniques described in this disclosure.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an example network
device 10 that includes and executes programs 18 written in a
high-level forwarding path description language (FPDL) in

US 9,106,581 B1

5

accordance with principles described in this disclosure. Net-
work device 10 may comprise a router such as a provider edge
or customer edge router, a core router, or another type of
network device, such as a switch.

In this example, network device 10 includes a control unit
12 that provides control plane functionality for the device.
Network device 10 also includes a plurality of forwarding
components in the form of example packet forwarding
engines 20A-20N (“PFEs 20”) and a switch fabric 26 that
together provide a data plane for forwarding network traffic.
PFEs 20 receive and send data packets via interfaces of inter-
face cards 22A-22N (“IFCs 22”) each associated with a
respective one of PFEs 20. Each of PFEs 20 and its associated
ones of IFCs 22 may reside on a separate line card for network
device 10 (not shown). Example line cards include flexible
programmable integrated circuit (PIC) concentrators (PFCs),
dense port concentrators (DPCs), and modular port concen-
trators (MPCs). Each of IFCs 22 may include interfaces for
various combinations of layer two (L.2) technologies, includ-
ing Ethernet, Gigabit Ethernet (GigE), and Synchronous
Optical Networking (SONET) interfaces. In various aspects,
each of PFEs 30 may comprise more or fewer IFCs. Switch
fabric 26 provides a high-speed interconnect for forwarding
incoming data packets to the selected one of PFEs 30 for
output over a network.

Control unit 12 is connected to each of PFEs 20 by internal
communication link 28. Internal communication link 28 may
comprise a 100 Mbps Ethernet connection, for instance. Dae-
mons 14A-14N (“daemons 14”) executed by control unit 12
are user-level processes that run network management soft-
ware, execute routing protocols to communicate with peer
routing devices, maintain and update one or more routing
tables, and create one or more forwarding tables for installa-
tion to PFEs 20, among other functions.

Control unit 12 may include one or more processors (not
shown in FIG. 1) that execute software instructions, such as
those used to define a software or computer program, stored
to a computer-readable storage medium (again, not shown in
FIG. 1), such as non-transitory computer-readable mediums
including a storage device (e.g., a disk drive, or an optical
drive) and/or a memory such as random-access memory
(RAM) (including various forms of dynamic RAM (DRAM),
e.g., DDR2 SDRAM, or static RAM (SRAM)), Flash
memory, another form of fixed or removable storage medium
that can be used to carry or store desired program code and
program data in the form of instructions or data structures and
that can be accessed by a processor, or any other type of
volatile or non-volatile memory that stores instructions to
cause the one or more processors to perform techniques
described herein. Alternatively, or in addition, control unit 12
may include dedicated hardware, such as one or more inte-
grated circuits, one or more Application Specific Integrated
Circuits (ASICs), one or more Application Specific Special
Processors (ASSPs), one or more Field Programmable Gate
Arrays (FPGAs), or any combination of one or more of the
foregoing examples of dedicated hardware, for performing
the techniques described herein.

PFEs 20 process packets by performing a series of opera-
tions on each packet over respective internal packet forward-
ing paths as the packets traverse the internal architecture of
network device 10. Operations may be performed, for
example, on each packet by any of a corresponding ingress
interface, an ingress PFE 20, an egress PFE 20, an egress
interface or other components of network device 10 to which
the packet is directed prior to egress, such as one or more
service cards. PFEs 20 each include forwarding structures
that, when executed, examine the contents of each packet (or

10

15

20

25

30

35

40

45

50

55

60

65

6

another packet property, e.g., incoming interface) and on that
basis make forwarding decisions, apply filters, and/or per-
form accounting, management, traffic analysis, and load bal-
ancing, for example. In one example, each of PFEs 20
arranges forwarding structures as next hop data that can be
chained together as a series of “hops” along an internal packet
forwarding path for the network device. The result of packet
processing determines the manner in which a packet is for-
warded or otherwise processed by PFEs 20 from its input
interface on one of IFCs 22 to its output interface on one of
IFCs 22.

In many instances, the forwarding structures perform
lookup operations, such as a tree (or trie) search, a table (or
index) search, a filter determination and application, or a rate
limiter determination and application. Lookup operations
locate, within a lookup data structure (e.g., a lookup tree), an
item that matches packet contents or another property of the
packet or packet flow, such as the inbound interface of the
packet.

Each of programs 18 stored by control unit 12 comprises
text that conforms to a high-level forwarding path description
language syntax that accords with the principles of this dis-
closure. In other words, each of programs 18 is an FPDL
program. Each of programs 18 specify, using a high-level
language syntax, the features of a section of a packet forward-
ing path within network device 10. Programs 18 specify func-
tions to be performed on the packet, including fundamental
packet forwarding operations such as input packet process-
ing, route lookup, and output packet processing, as well as
service functions such as packet filtering or access control,
statistical sampling, traffic policing, rate limiting, and
accounting.

When bound to a set of arguments, respective programs 18
define, for packet forwarding paths of PFEs 20, a forwarding
path block forwarding structure that is a packet forwarding
path peer of a firewall, next-hop, or route table. A forwarding
path block, defined by one programs 18 bound to a set of
arguments and instantiated within PFEs 20 as respective for-
warding path blocks 24A-24N (“FPBs 24”), may itself be
composed of multiple other forwarding structures, such as
lookup operations and policing, management, counting, and
filtering functions, for example.

Daemons 14 at run-time identify individual programs 18
for compilation and instantiation as FPBs 24 in order to apply
functions designated by the daemons for the forwarding plane
functionality of network device 10. For example, one of dae-
mons 14 may execute the Border Gateway Protocol (BGP)
and receive a message from a BGP peer that causes the
daemonto trigger a particular BGP function defined by one of
programs 18. As another example, one of daemons 14 may
execute a command line interface (CLI) that receives, from a
user, a command to apply a policing function that is defined
by one of programs 18 to rate limit a particular traffic flow at
a particular rate. In response, daemons 14 invoke FPB inter-
face 16 to select the appropriate ones of programs 18 for
installation to PFEs 20 as FPBs 24. As used herein, the term
“run-time” refers to any time after network device 10 is
deployed within a network environment versus pre-compiled
and installed within the network device at the time of manu-
facture. Run-time may thus refer to the setup and configura-
tion upon power-up of network device 10 as well as full
operation, for instance.

FPB interface 16 presents an interface to the forwarding
components (in this example, PFEs 20) by which daemons 14
may select one or more of programs 18, provide a set of
arguments to bind to the selected programs, direct the instan-
tiation of FPBs 24 within PFEs 20 to establish packet for-

US 9,106,581 B1

7

warding paths, and provide lookup data with which to modify
lookup data structures referenced in programs 18. FPB inter-
face 16 may comprise one or more user- or kernel-level librar-
ies, programs, toolkits, application programming interfaces
(APIs) and may communicate programs, arguments, and
lookup data to PFEs 20 via internal communication link 28
using sockets.

In the illustrated example, daemon 14 A invokes FPB inter-
face 16 to install a forwarding path block forwarding structure
to FPBs 24A of PFE 20A. Daemon 14A selects one of pro-
grams 18A and provides to FPB interface 16 a set of argu-
ments to bind to the selected program. In response, FPB
interface 16 sends the selected one of programs 18 to PFE
20A as FPDL description structure 25, a data structure that
includes information needed by PFEs 20 to instantiate the
program. For example, FPDL description structure 25 for the
selected program may specify the program text (i.e., the pro-
gram in textual form), the program name, and argument vari-
ables that define an interface to the program. In some
instances, FPB interface 16 sends FPDL description data
structures for each of programs 18 to PFEs 20 during a con-
figuration/setup phase for the PFEs. Although described with
respect to PFEs 20 by way of example, the techniques herein
can be used to configure other types of forwarding compo-
nents.

In addition, FPB interface 16 creates and sends, as a dis-
tinct structure, FPB description structure 27 to PFE 20A. FPB
description structure 27 is a data structure that references
FPDL description structure 25 and includes the arguments
provided by daemon 14A for binding to the selected one of
programs 18 described by FPDL description structure 25.
FPB interface 16 assigns a unique, system-wide identifier to
each FPB description structure. FPB description structure 27
includes the information required for a particular instance of
the selected one of programs 18 described by FPDL descrip-
tion structure 25. Other FPB description structures may also
reference FPDL description structure 25 and yet include dif-
ferent information for a different instance of the selected one
of programs 18.

Each of FPDL description structure 25 and FPB descrip-
tion structure 27 may comprise tables, structs/classes, or
other data structure types to carry the requisite information.
FPB interface 16 may send FPDL description structure 25 and
FPB description structure 27 to PFE 20A in separate mes-
sages or in a combined message.

PFE 20A receives FPDL description structure 25 and
locally compiles the included program text to intermediate
code representation, or “pseudo-code,” that includes place-
holders for argument variables that may be bound (e.g.,
parameterized) with argument values specified by various
FPB description structures. PFE 20A also receives FPB
description structure 27, responsively loads the intermediate
code to the forwarding hardware, and binds (or “links™) the
argument values specified therein to the corresponding argu-
ment variable placeholders in the loaded intermediate code to
create and install a new forwarding path block in FPBs 24A.
In this manner, PFE 20A creates a new forwarding path struc-
ture in the packet forwarding path. In some aspects, PFE 20A
binds an argument value of FPB description structure 27 to an
argument variable placeholder of FPDL description structure
25 by writing the argument value to the memory location for
the argument variable placeholder. The argument value may
represent another memory location, a forwarding path refer-
ence that specifies another forwarding path structure, or
another type of reference that facilitates packet forwarding
path construction.

10

15

20

25

30

35

40

45

50

55

60

65

8

Subsequently, PFE 20A may receive additional FPB
description structures that correspond to FPB description
structure 27 and have updated argument values. PFE 20A
rebinds these updated argument values to argument variables
of'the new forwarding path block created for FPB description
structure 27 to modify the program flow from and/or within
the new forwarding path block. That is, PFE 20A changes the
argument set for a program already instantiated as a forward-
ing path block. Moreover, PFE 20A may receive additional
FPB description structures that also reference FPDL descrip-
tion structure 25 yet are not associated with FPB description
structure 27. The additional FPB description structures in this
case, in other words, direct PFE 20A to create a separate
instance of the referenced program as a separate forwarding
path block. As a result, the techniques allow numerous
instances of the same program to be used with different argu-
ment sets without prompting a recompilation of the program
by PFEs 20. As a result, daemons 14 by invoking FPB inter-
face 16 may more easily and flexibly modify the forwarding
paths of PFEs 20.

FIG. 2 is a block diagram illustrating an example embodi-
ment of network device 10 of FIG. 1 in further detail. In this
example, control unit 12 provides a control plane 78A oper-
ating environment for execution of various user-level dae-
mons 14 executing in user space 40. Daemons 14 in this
example include command-line interface daemon 32 (“CLI
32”), routing protocol daemon 34 (“RPD 34”), and Simple
Network Management Protocol daemon 36 (“SNMP 36”). In
this respect, control plane 78A may provide routing plane,
service plane, and management plane functionality for net-
work device 10. Various instances of control unit 12 may
include additional daemons 14 not shown in FIG. 2 that
perform other control, management, or service plane func-
tionality and/or drive and otherwise manage data plane func-
tionality for network device 10.

Daemons 14 operate over and interact with kernel 43,
which provides a run-time operating environment for user-
level processes. Kernel 43 may comprise, for example, a
UNIX operating system derivative such as Linux or Berkeley
Software Distribution (BSD). Kernel 43 offers libraries and
drivers by which daemons 14 may interact with the underly-
ing system. PFE interface 54 of kernel 43 comprises a kernel-
level library by which daemons 14, FPB interface 44, FPDL
interface 46, and other user-level processes or user-level
libraries may interact with PFEs 20. PFE interface 54 may
include, for example, a sockets library for communicating
with PFEs 20 over dedicated network links

Hardware environment 50 of control unit 12 comprises
microprocessor 52 that executes program instructions loaded
into a main memory (not shown in FIG. 2) from storage (also
not shown in FIG. 2) in order to execute the software stack,
including both kernel 43 and user space 40, of control unit 12.
Microprocessor 52 may comprise one or more general- or
special-purpose processors such as a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA), or any other equiva-
lent logic device. Accordingly, the terms “processor” or “con-
troller,” as used herein, may refer to any one or more of the
foregoing structures or any other structure operable to per-
form techniques described herein.

RPD 34 executes one or more interior and/or exterior rout-
ing protocols to exchange routing information with other
network devices and store received routing information in
routing information base 45 (“RIB 45”). RIB 45 may include
information defining a topology of a network, including one
or more routing tables and/or link-state databases. RPD 34
resolves the topology defined by routing information in RIB

US 9,106,581 B1

9

45 to select or determine one or more active routes through the
network and then installs these routes to forwarding informa-
tion base 42 (“FIB 42”). Typically, RPD 34 generates FIB 42
in the form of a radix or other lookup tree to map packet
information (e.g., header information having destination
information and/or a label stack) to next hops and ultimately
to interface ports of interface cards associated with respective
PFEs 20.

Command line interface daemon 32 (“CLI 32”) provides a
shell by which an administrator or other management entity
may modify the configuration of network device 10 using
text-based commands. Simple Network Management Proto-
col daemon 36 (“SNMP 36”) comprises an SNMP agent that
receives SNMP commands from a management entity to set
and retrieve configuration and management information for
network device 10. Using CLI132 and SNMP 36, management
entities may enable/disable and configure services, install
routes, enable/disable and configure rate limiters, and config-
ure interfaces, for example. As described in detail below, RPD
34, CLI132, and SNMP 36 configure data plane 78B to imple-
ment configured services, add/modity/delete routes, and oth-
erwise modify packet forwarding paths by installing forward-
ing structures to PFEs 20 using forwarding path block
interface 44 (“FPB interface 447).

FPB interface 44 allows daemons 14 to drive the installa-
tion and configuration of forwarding path description lan-
guage programs 48 (“FPDL programs 48”) in packet for-
warding paths. In particular, FPB interface 44 includes an
application programming interface by which daemons 14
may request one of FPDL programs 48, bind the requested
program to arguments, and send the arguments and the
requested program to PFEs 20 for compilation, instantiation
and installation by PFEs 20 to ASICs 68 as forwarding path
blocks 74 (“FPBs 74”). FPDL interface 46 manages FPDL
programs 48 and FPDL description structures. FPDL inter-
face 46 includes an application programming interface acces-
sible by FPB interface 44 and by which FPB interface 44 may
direct FPDL interface 46 to send one of FPDL programs 48 to
one of PFEs 20 within an FPDL description structure.

PFEs 20 implement data plane 78B (also known as a “for-
warding plane”) functionality to handle packet processing
from ingress interfaces on which packets are received to
egress interfaces to which packets are sent. Data plane 78B
determines data packet forwarding through network device
10, applies services, rate limits packet flows, filters packets,
and otherwise processes the packets using forwarding struc-
tures and lookup data installed by control plane 78A to data
plane 78B. While FIG. 2 illustrates only PFE 20A in detail,
each of PFEs 20 comprises similar components that perform
substantially similar functionality.

PFE 20s bind actions to be performed on packets received
by the PFEs to identification of one or more properties of the
packets. That is, upon identifying certain packet properties,
PFEs 20 perform the action bound to the properties. Packet
properties may include packet metadata such as a particular
packet’s ingress interface or egress interface (as determined
by the PFEs) as well as information carried by the packet and
packet header, such as packet header fields, destination route
prefixes, layer four (L4) or Transport Layer protocol destina-
tion ports, and the packet payload. Actions bound to packet
characteristics may include count, discard, forward to a speci-
fied next-hop or interface, filter, sample, rate limit, and Qual-
ity of Service (QoS) marking, differential services (DiftServ),
load balance, intrusion detection and prevention, [.2 class of
service (CoS), and L2 or L2 Virtual Private Network
(L2VPN) switching.

25

30

35

40

45

55

10

PFE 20A includes ASIC-based packet processors (“ASICs
68”) that process packets to identify packet properties and
perform actions bound to the properties. ASICs 68 include
one or more programmable application-specific integrated
circuits having key engines 70A-70M (“key engines 70”) that
execute microcode (or “microinstructions™) to control and
apply fixed hardware components of ASICs 68 to process
packet “keys.” A packet key includes packet fields and other
parameters that determine a flow of packet processing for the
packetalong an internal forwarding path. Each ofkey engines
70 includes one or more key bufters to store packet field data
for corresponding packets that the key engine is currently
processing. Key buffers may also provide limited writable
memory to which elements of the internal forwarding path
may write to pass messages accessible by future elements.
Internal forwarding path 72 (“forwarding path 72”) com-
prises programmable, executable microcode and fixed hard-
ware components that determine the packet processing
actions and other operations performed by key engines 70.
Forwarding path 72 may include, for example, executable
instructions, programmable logic, and application-specific
logic that perform lookups, rate limit packet flows, and
manipulate packet keys, among other functions. Internal for-
warding paths of network device 10 may include combina-
tions of respective forwarding paths 72 of PFEs 20. In other
words, forwarding path 72 of PFE 20A may include only a
part of the overall internal forwarding path of network device
10.

Primitives 76 of forwarding path 72 include data structures
having entries, or “items,” that correspond to packet key
values and bind the values to actions to be performed by key
engines 70 executing forwarding path 72. In this respect,
primitives 76 represent a tightly-coupled combination of
executable instructions that correspond to bound actions and
of data for possible packet key values. A tree lookup one of
primitives 76 may perform a longest-match prefix lookup in a
routing table or search a list of prefixes in a filter program. A
table lookup one of primitives 76 may determine whether
another one of primitives 76 should be performed by key
engines 70. For example, key engine 70A may perform atable
lookup of packet properties to determine that key engines
70A should further perform a tree lookup to identify an out-
bound interface for the packet. PFE 20A may store primitives
76 and FPBs 74 in computer-readable storage media, such as
static random access memory (SRAM). While illustrated
within ASICs 68, primitives 76 may be stored in memory
external to ASICs 68 onboard PFE 20A.

In some aspects, actions of forwarding path 72 use a next
hop data structure to initiate processing. At the end of each
processing step by one of key engines 70, such as execution of
one of primitives 76 or of one of FPBs 74, the result is a next
hop that may specify additional processing or the termination
of'processing, for instance. In addition, next hops may specify
one or more functions to be executed by key engines 70.
Example next hop functions include policing (i.e., rate limit-
ing), counting, and sampling. Next hops thus form the pri-
mary data structure that can be used to initiate a lookup or an
FPB 74, chain lookups and FPBs 74 to allow for multiple
lookup and other operations to be performed on a single
packet, and terminate a lookup or an FPB 74. Key engines 70
may be associated with respective result (or “lookup”) buffers
that store results for executing next hops. For example, key
engine 70A may execute a lookup specified by a next hop and
store the result of the lookup to the associated result buffer.
The contents of a result buffer may affect the actions of the
next hop in the next hop chain. Additional information regard-
ing next hops and next hop chaining is available in PLAT-

US 9,106,581 B1

11

FORM-INDEPENDENT CONTROL PLANE AND
LOWER-LEVEL DERIVATION OF FORWARDING
STRUCTURES, U.S. application Ser. No. 12/266,298, filed
Now. 6, 2008, which is incorporated herein by reference in its
entirety.

PFE microprocessor 62 manages ASICs 68 and executes
FPB-PFE interface 64 to provide an interface to control unit
12. PFE microprocessor 62 may execute a microkernel to
provide an operating environment for interfaces. FPB-PFE
interface 64 is a programming interface receives FPDL and
FPB description structures from PFE interface 54 of control
unit 12. As described above, an FPB description structure
binds arguments to FPDL program parameters identified in a
FPDL description structure that includes one of FDPL pro-
grams 48.

FPB-PFE interface 64 receives FPDL programs 48 in tex-
tual form in FPDL description structure. That is, the programs
asreceived by the PFEs conform to the high-level, forwarding
path description language and may not comprise data execut-
able by a processor, such as one of key engines 70. Compiler
66 of PFE 20A compiles FPDL programs 48 identified in
FPDL description structures using the arguments provided in
FPB description structures to generate microcode that con-
stitutes a forwarding path block forwarding structure. In this
way, compiler 66 creates executable instances of the FPDL
programs 48 referenced in corresponding FPDL description
structures and FPB description structures. Because each of
PFEs 20 includes an instance of compiler 66, the compiler
represents a distributed compiler for network device 10 that
may provide PFE-specific compilation targeted to the par-
ticular chip-set represented by ASICs 68.

The arguments provided in FPB description structures may
specify, for example, conditional compilation for portions of
a specified one of FPDL programs 48 as well as next hops of
forwarding path 72, including next hops that initiate FPBs 74
and primitives 76. FPB-PFE interface 64 installs compiled
forwarding path blocks to forwarding path 72 as FPBs 74 for
execution by key engines 70. By providing updated argu-
ments for FPB description structures via FPB interface 44,
daemons 14 can alter the operation of instantiated FPBs 74
by, for example, changing the next hops for the forwarding
path blocks. In this way, daemons 14 may modify the opera-
tion of forwarding path 72 without necessitating a recompile,
by compiler 66, of FPDL programs.

Some instantiated FPBs 74 specify one or more lookups
operations using primitives 76. For example, one of FPBs 74
may specify a lookup operation using a tree one of primitives
76. These FPBs 74 lookups specify the actions to be per-
formed for items bound to the actions in the primitives. In
other words, each item of primitives 76 is bound to an action
performed by key engines 70 for packets having keys that
match the item. Instantiated FPBs 74 determine the actions to
be performed. In some instances, the action to be performed
may include executing a next hop external to a particular one
of FPBs 74 and modifiable using FPB interface 44.

FPB interface 44 of control unit 12 provides an interface by
which daemons 14 may add to, modify, or delete items of
primitives 76 to modify packet processing by forwarding path
72 of packets having keys that match the items. For example,
RPD 34 may invoke FPB interface 44 to add, to a lookup tree
one of primitives 76 identified within one of FPBs 74, an item
that binds a destination prefix to an action that includes a
statement that references a next hop structure, which may be
populated with a reference to another one of FPBs 74. As
another example, CLI 32 may invoke FPB interface 44 to add,
to a lookup table one of primitives 76 identified within one of
FPBs 74, an item that binds an inbound interface to an action

15

20

40

45

55

12

that directs key engines 70 to discard packets that arrive on the
inbound interface when executing the FPB.

Some instantiated FPBs 74 specify one or more rate limit-
ers that includes one or more policer stages that each bind an
action to a particular flow rate. When a packet flow exceeds
the flow rate for a particular policer stage of a rate limiter, key
engines 70 execute the corresponding bound action. FPB
interface 44 also provides interface to set rate limiter stage
flow rates or to bind an action to a rate limiter stage. For
example, SNMP 36 may invoke FPB interface 44 to obtain a
reference to a rate limiter of a particular one of FPBs 74.
SNMP 36 may then use the reference to set a flow rate for a
second stage of the rate limiter to a particular bandwidth. As
another example, SNMP 36 may use the reference to bind the
second stage to an action (identified in the one of FPDL
programs 48 from which compiler 66 compiled the FPB) that
directs key engines 70 to load balance traffic that exceeds the
flow rate for the second stage. Some instantiated FPBs 74
specify one or more counters that may be instantiated within
forwarding path 72 and manipulated by key engines 70 during
the execution of actions bound to packet key values or flow
rate values, for example. Primitives 76, such as lookup tables
and lookup tree, along with rate limiters and counters are
hereinafter collectively referred to as “forwarding path ele-
ments.” However, forwarding path elements may include
additional types of structures to carry out data plane 78B
functionality listed above.

Daemons 14 using FPB interface 44 can in the described
manner manage lookup and rate limiter operations by refer-
encing high-level constructs of FPDL programs 48. In this
way, the described techniques may simplify programming of
forwarding path 72.

FIG. 3 is a block diagram illustrating FPDL interface 46 of
FIG. 2 in further detail. FPDL interface 46 reads FPDL pro-
grams 48 from a computer-readable storage medium and
pre-processes the programs to identify respective interface
information for the programs. Program interface information
for any of FPDL programs 48 may include the name of the
program, names of program arguments, names of primitives
and/or actions specified in the program, and names of rate
limiters, for example. FPDL interface 46 assigns a unique
identifier to each of programs 48 and generates one of FPDL
description structures 82A-82M (“FPDL description struc-
tures 82”) that each include the respective unique identifier
(not shown), program interface information 101A-101M (il-
lustrated as “program interfaces” 101 A-101M), and program
text 100A-100M (illustrated as “programs” 100A-100M).
FPDL interface 46 stores references to FPDL description
structures in FPDL identifier table 80, which allows FPB
interface 44 to reference an FPDL description structure by a
unique identifier for the program included within the FPDL
description structure. Unique identifiers for FPDL descrip-
tion structures 82 may specify anindex to FPDL identity table
80. FPDL interface 46 may store FPDL description structure
82 in memory until referenced by an FPB description struc-
ture. FPDL interface 46 may perform pre-processing of
FPDL programs 48 when network device 10 powers on.

Example program text 100A illustrates forwarding path
description language constructs that, when bound to received
program arguments, compiled, and instantiated as FPBs 74 in
forwarding path 72 of PFEs 20, direct packet processing by
key engines 70 of PFEs 20. The forwarding path description
language supports definition elements including scalars, such
as integers and Booleans, structure definitions, type defini-
tions (e.g., typedef), and bitfields. Program 100A includes
global arguments 102, global instantiation variables 104
(“inst. vars. 104”), and a set of one or more blocks 106A-

US 9,106,581 B1

13
100N (“blocks 100”). Each of programs 100A has a unique
name to enable the program to be referenced by FPB interface
44 to create FPB description structures and instantiate the
program. In some instances, the forwarding path description
language identifies a program variable using type program.

Global arguments 102 set forth argument variables that
indicate to compiler 66 that the variable should be initialized
externally via parameters supplied in an FPB description
structure when the program is instantiated. In this way, global
arguments 102 (together with block-local arguments 107)
define an external interface to the program. As a result, FPDL
interface 46 extracts the names of program argument vari-
ables to program interface information 101A during pre-
processing. Global arguments 102 have block-global scope
within program 100A and may therefore be referenced within
any of blocks 106. In some instances, the forwarding path
description language identifies arguments using variable type
arg, making arg a valid storage class for the language. To
declare a scalar that is an argument variable, for example,
program 100A may include the text arg uint32 m_int;, where
int32 specifies an unsigned 32-bit integer. Once initialized in
compiler 66 compiling program 100A with externally sup-
plied parameters, compiler 66 uses argument variables in a
read-only manner to build an instance of the program.

Global instantiation variables 104 direct compiler 66 to
instantiate a specified forwarding path element and allow that
element to be referenced throughout blocks 106 of program
100A. Example instantiation variable types include counter,
table, tree, and rate limiter. To declare a counter, for example,
program 100A may include the text counter c¢;. Once initial-
ized in compiler 66 compiling program 100A, compiler 66
uses instantiation variables in a read-only manner to build an
instance of the program.

Blocks 106 represent elemental code containers of the
forwarding path description language. Each of blocks 106
may contain variable declarations (e.g., arguments 107 and
instantiation variables 108), statements 110, functions 109,
and conditionals 112 that determine the instantiated forward-
ing path elements for a forwarding path block instance of a
program as well as the operations of key engines 70 with
respect to the forwarding path elements and program flow.
Blocks 106 consolidate forwarding path description language
code into easily readable sections and, because each block is
named, allow the blocks to be referred to from within program
100A and also, via a reference obtained using FPB interface
44, external to program 100A.

By default, the first block 106A listed in program 100A is
the default entry block for the program (i.e., the first block
executed by key engines 70 upon initiation). Execution of
compiled blocks by key engines 70 may “jump” from a first
one of blocks 106 to a second one of blocks 106 only when the
first block includes an explicit instruction to begin executing
the second block. In this way, blocks 106 are similar to func-
tions because they may be invoked and because they consoli-
date forwarding path description language code into sections.
However, blocks 106 are not equivalent to functions because
blocks do not return to an invoking block unless the invoked
block includes an explicit instruction to return to the invoking
block. In this way, blocks 106 have the properties of a labeled
instruction that may be invoked by directing the thread to
execute the labeled instruction (i.e., the first instruction
within the block). To declare a block, for example, program
100A may include the text block blockA {/* block code */}.

Block-local argument variables 107 set forth argument
variables that indicate to compiler 66 that the variable should
be initialized externally via parameters supplied in an FPB
description structure when the program is instantiated.

10

15

20

25

30

35

40

45

50

55

60

65

14

Block-local instantiation variables 108 direct compiler 66 to
instantiate a specified forwarding path element. Block-local
argument variables 107 and instantiation variables 108 may
be referenced only within block 106 A. In other words, block-
local variables do not have scope outside of the blocks in
which they are declared.

The forwarding path description language may also pro-
vide syntax enabling assignments, parameterized functions,
and compiler directives. Assignments may conform to stan-
dard C language syntax. Instantiation variables may not in
general be assigned to because the variable only exists during
instantiation. Instantiation variables may, however, be
assigned to using instantiation constructor functions 109 for
the variables. For example, block 106 A may include the
assignment instruction table foo_table=table (max: MAX_
ENTRIES); that directs compiler 66 to instantiate the new
table according to the instantiation constructor table ().

The forwarding path description language parameterizes
functions using name: value pairs that provide values for
named parameters and that can be listed in the function call in
any order. Some functions may not be parameterized. Param-
eters may be mandatory or optional. Unsupplied values for
optional parameters may cause compiler 66 to use an internal
default value for the parameter. A parameter value may be an
array of scalars or strings, for example. For instance, block
106 A may include the assignment instruction bar
foo_bar=bar(parameter2: valuel, parameterl: [entryl,
entry2]);. This example instruction invokes the bar function
using valuel for parameter2 and an array of values for param-
eterl.

Compiler directives of the forwarding path description lan-
guage modify compilation of compiler 66 according to pro-
vided parameters. For example, a compiler directive may
indicate that program 100A is only available to run on any of
a set of one or more ASIC architecture types listed in the
directive. As a result, compiler 66 may decline to compile
program 100A when compiler 66 executes on one of PFEs 20
that includes an ASIC chipset architecture type that is not
listed in the compiler directive.

As described in further detail below, program flow within
programs 100 is block-based. That is, due to the limited
invocation context for key engines 70, key engine execution
threads pass among labeled code blocks rather than among
procedures. Functions 109 represent native (i.e., built-in)
accessor functions that enable instantiation variables 108
(e.g., counters, rate limiters, and primitives) to be created and
assigned according to function parameters. For example, as
described above, block 106 A may include the assignment
instruction table foo_table=table (max: MAX_ENTRIES);
that directs compiler 66 to instantiate the new, empty table
according to the accessor function table () of functions 109.
Similar instantiation constructor may be presented by the
FPDL for other forwarding path elements, such as trees,
counters, and rate limiters, for example. In some instances,
the instantiation constructor for tables may present a required
parameter to define a number of entries for the table, and the
instantiation constructor for rate limiters may present a
required parameter to define a number of policer stages for the
rate limiter.

Each of functions 109 presents an optional scope param-
eter that allows developers using the FPDL to manage the
instantiation scope of the corresponding forwarding path ele-
ment across separate instances of programs 100 installed to
forwarding path 72. For example, program 100A may define
a lookup table one of instantiation variables 108 as global. As
a result, each one of FPBs 74 that is an instance of program
100A uses the same instance of the lookup table when

US 9,106,581 B1

15

executed by key engines 70. In other words, each instance of
the lookup table is global and accessible by all instances of the
program. As another example, a program 100A may define a
local counter within a bound action also defined within pro-
gram 100A. Each one of FPBs 74 that is an instance of
program 100A is associated with a separate instance of the
local counter. In other words, each local counter is local to an
instance of the program and not accessible to other instances
of the program. The scope of a forwarding path element
defined in one of functions 109 for the element refers to the
scope of the element among forwarding path block instances
of a program (i.e., whether the element is shared), whereas
block-local and block-global scope refers to a scope of vari-
ables within one of programs 100.

Key engines 70 execute statements 110 set forth within
programs, such as program 100A. Compiler 66 generates and
installs microcode for each of statements 110. In this sense,
statements 110 instantiated in FPBs 74 define aspects of
forwarding path logic for forwarding path 72. Statements 110
includes statements that control program flow, such as if
(condition) { } else { } statements for evaluating conditions
using comparisons, for instance. The following is an if () else
statement that conforms to an example FPDL:

if(result_read(field: iif-mismatch)==TRUE) {

// Learn source interface

goto vpls_sa_learn;
} else {

increment(counter: vpls_sa_age);

In the above example, key engines 70 read an iif-mismatch
field of a result buffer populated by executing a previous next
hop, for instance. If the field value is true, the key engines 70
execute a vpls_sa_learn block that updates a VPLS 1.2 table
for the network device with the source L2 address of the
packet being processed. Ifthe field value is false, the VPLS .2
table has already learned the L2 address and the key engines
70 increment a counter to age the VPLS 1.2 table entry for the
source address.

Other example statements that control program flow for
FPDL programs include goto, which references one of' blocks
106 and causes key engines 70 to jump execution to the
referenced block. A goto statement of statements 110 in block
106A may reference block 106 A to facilitate recursive execu-
tion. A call statement of statements 110 invokes one of blocks
106 without parameters and without receiving a return value.
A return statement of statements 110 in one of blocks 106
returns an execution thread to another one of blocks 106 that
invoked the block with a call statement. In order the return,
the return statement must be present. The call statement may
be stacked among multiple blocks 106.

An exit statement of statements 110 causes packet forward-
ing engines 70 to execute code that is external to one of FPBs
74 instances of programs 100. The exit statement may refer-
ence a next hop reference, another one of FPBs 74, or other
forwarding path reference type. A discard statement of state-
ments 110 causes packet forwarding engines 70 to terminate
packet processing for the packet currently being processed.

A lookup statement of statements 100 directs lookup func-
tionality of forwarding path 72 by associating one or more
possible actions with a lookup result for one of primitives 76
that is predicated upon a key value. In one example of a
lookup statement, an item statement defines a template for
items that may be instantiated within one of primitives 76 and
bound to the one more actions defined by one or more action
statements of the lookup statement. The action statements
define per-action operations executed when a lookup opera-
tion identifies the matching item and performs the bound

5

10

15

20

25

30

35

40

45

50

55

60

65

16

action. In addition, the item statement may include one or
more instantiation variables and statements that apply to each
item instantiated from the item statement template. These
define per-item operations. A default statement within a
lookup statement defines a default action for a lookup opera-
tion. When the lookup operation is unable to determine a
matching item, key engines 70 execute the operations defined
by the default statement. If no default is specified, key engines
70 may discard the packet being processed.

Daemons 14 may use FPB interface 44 to add items to one
of primitives 76 and bind these items to actions named in the
action statements for the to statement that references the
primitive. FPB-PFE interface 64 instantiates added items by
adding any forwarding path elements and microcode required
by the item statement template for the lookup statement that
references the primitive. Compiler 66 translates a lookup
statement of statements 100 into a forwarding hardware
lookup executable by key engines 70.

Rate-limiters of forwarding path 72 may be based on a
series of cascaded stages. A rate-limiter ()statement of state-
ments 100 directs rate-limiting functionality of forwarding
path 72 by associating one or more possible actions with a
rate-limiter stage (e.g., a policer) that triggers when traffic
flow exceeds the allowed bandwidth for the stage. When a
rate-limiter stage triggers, key engines 70 execute the action
bound to the rate-limiter stage. Daemons 14 may use FPB
interface 44 to set allowable bandwidths for each rate-limiter
stage and bind each rate-limiter stage to an action defined
within a rate-limiter () statement of statements 100 in pro-
grams 100.

An increment () statement of statements 100 increments a
counter defined as one of instantiation variables 104, 108
within programs 100. The counter may be supplied to the
statement as a parameter. The following is an increment ()
statement that conforms to an example FPDL: increment
(counter: discard_counter). A sample () statement of state-
ments 100 directs keys engines 70 to sample the packet cur-
rently being processed. The sample class may be specified as
aparameter, which may be supplied as one of arguments 102,
107. Sampling refers to a process of forwarding a copy of a
packet to an external system, such as control unit 12, for
processing. A packet that is designated to be sampled is
processed normally according to forwarding path 72, but data
plane 78B creates a copy of the packet (or portion of the
packet) and forwards the copy to control plane 12 for further
processing. The following is a sample () statement that con-
forms to an example FPDL: sample(class: myclass).

The statements packet_read () and packet_write () of
statements 110 access packet header fields in the key buffers
of’key engines 70 for reading from and writing to header field
values, respectively. The packet_read () statement is a func-
tion that returns the value of field name specified for the
function and may thus be used for comparison evaluation, as
in the following example:

if(packet_read(field: ip4.proto)==ICMP) {

// Handle ICMP packet

In the above example, an FPB instance of one of programs
100 that includes these statements directs key engines 70 read
the 1Pv4 protocol field of the packet header being processed
from the associated key buffer for the key engine and deter-
mine whether the field has a value equal to the constant
defined for ICMP. Ifthe packet is an Internet Control Message
Protocol (ICMP) packet, packet engines 70 process the
packet as an ICMP packet, which may include trapping the
packet to control plane 78A.

US 9,106,581 B1

17

The statements result_read () and result_write () of state-
ments 110 access fields of the result buffer associated with the
executing one of key engines 70 to enable data passing
between next hops within and external to FPBs 74. The
result_read ()statement is a function that returns the value of
field name specified for the function and may thus be used for
comparison evaluation, as in the following example:

if(result_read(field: iif-mismatch)==TRUE) {

// Learn source address

}

Inthe above example, packet engines 70 read their associated
result buffers to determine whether the packet currently being
processed does not match the expected inbound interface, as
determined by the operation of a previous next hop in the next
hop chain that also includes one of FPBs 74 instantiated from
a program 100 that defines the above example code.

Conditionals 112 may affect both execution by key engines
70 and compilation/instantiation by compiler 66. Key engines
70 evaluate conditionals 112 defined in programs 100 and
direct the execution thread according to the outcome. The
following example that conforms to an example FPDL pro-
gram 100 redirects IPv4 fragments based on a key buffer field:

program fragment-redirect

arg fpr_t service_fpr;
arg fpr_t next_fpr;
block fragment_input {
if(packet_read(field: ip4.is_fragment)==TRUE) {
exit service_fpr;
} else {
exit next_fpr;
}
}

By updating the argument variables of the above program,
daemons 14 via FPB interface 44 may alter the forwarding
path to prescribe subsequent forwarding path elements for the
possible results of the conditional without requiring compiler
66 to recompile the program 100 and instantiate a new one of
FPBs 74.

In addition, compiler 66 evaluates conditionals 112 in pro-
grams 100 that are dependent upon argument variables and
compiles the programs according to arguments supplied by
FPB interface 44. The following example that conforms to an
example FPDL program 100 causes compiler 66 to instanti-
ate, based on the supplied argument, only partial logic defined
by the program:

program set_interface_type

arg boolean vpls_is_pe;
block vpls_input {
if(vpls_is_pe) {

packet_context.vpls_mesh_group=VPLS_PE_D_MESH;

} else {

5

10

15

20

25

30

35

40

45

50

18

different modes for a forwarding path feature, as determined
by arguments supplied to the PFEs 20.

The example program code provided above and throughout
this disclosure is merely exemplary. Other program code
grammars capable of facilitating the described techniques are
also contemplated. In one example, program code, including
the various blocks, arguments, instantiation and other vari-
ables, functions, statements, conditions, and arguments, may
conform to the following language definition, which for illus-
trative purposes is in Backus-Naur Form (BNF):

/*

* FPDL BNF
*/
grammar FPDL;

/*

* Top level

*/
input:

program+
e

* Overall syntax of program

*/
program:

L_PROGRAM L_NAME [._BEGIN

program_unit+

L_END
e

* Declarations can be interspersed with blocks

*/
program_unit:

block |

declaration
e

* Overall block syntax

*/
block:

L_BLOCK L_NAME

compound_statement

compound_statement:
L_BEGIN
block_statement™*
L_END
p
* Statement
£
* We classify statements in two ways:
* -control/ vs. operation
* _conditional vs. unconditional
£

packet_context.vpls_mesh_group=VPLS_CE_D_M#SH;* ‘operation’ means change packet-related state in some

}

By providing the appropriate argument variable value for the
above program, FPB interface 44 causes compiler 66 to con-
ditionally compile and instantiate one, but not the other, of the
possible resulting instructions for the condition. If the VPLS
is a provider edge interface, compiler 66 compiles the state-
ment setting the VPLS mesh group to the default VPLS PE
mesh group. Otherwise, compiler 66 compiles the statement
setting the VPLS mesh group to the default VPLS CE mesh
group. In this way, a single program may support multiple

60

65

way.
* ‘control’ involves branching (and not returning) to
another block.
sk

* This gives four possible types of statements:
sk

* 1) unconditional_operation

* 2) conditional_operation

* 3) conditional_control

* 4) unconditional_control

sk

*/

US 9,106,581 B1

19 20
block_statement: L_BEGIN
declaration | action+
unconditional_statement | L_END
if_else ;
; 5o/
unconditional_statement: * Variable declarations and storage/type definitions
unconditional_operation | %/
unconditional_control declaration:
unconditional_operation: 0 .storage_type data_type L_NAME initialization *;

El

pfe_write |

increment_statement | storage_type:

lookup_or_rate_limit L_ARGUMENT |

. -0 T L_PFE
lookup_or_rate_limit: 15)

lookup_statement | data_type:

rate_limit_statement L_NAME |

: L_BOOLEAN |
goto_statement: L_UCHAR |

L_GOTO L_NAME °; 20 L_USHORT |

; L_ULONG |
/* L_FPR |

* Lookups L_LIST |

* Basic lookup syntax. This currently defines three types of L_COUNTER_T |
lookup (itables, trees and flow) 25 L_RATE LIMITER T |

* Extensible to match different lookup requirements L_ITABLE T|

*/ L_TREE T
lookup_statement: L_FLOW_T

L_LOOKUP‘(’ lookup_arguments ‘)’ I,_BEGIN ;

lookup_entry+ 30 /*

L_END * Variable initialization.

; */
lookup_arguments: initialization:

table_type L_COLON [L_NAME °,” lookup_key L_EQ initialization_type ‘(" scope_def initialization_list

; 35 VI
table_type: /* optional */

L_ITABLE | ;

L_TREE | initialization_type:

L_FLOW L_COUNTER |

; 40 L_RATE LIMITER |
lookup_key: L_ITABLE |

L KEYL_COLONL_HIER NAME L_TREE |

; L_FLOW
lookup_entry: ;

lookup_item | 45 initialization_list:

action initialization_argument+ |

; /* optional */
lookup_item: ;

L_ITEM initialization_argument:

compound_statement 50 L_NAME L_COLON L_NUMBER |

R L_NAME LL_COLON L_NAME
action: R

L_ACTION L_NAME compound_statement scope_def:

R L._SCOPE L._COLON scope_level comma_or_nothing |
/* 55 R

* Counter increment action statement comma_or_nothing:

*/ O
increment_statement: /* nothing */

L_INCREMENT‘(" L_COUNTER I._COLON L._NAME R

Yy 60 scope_level:

; L_GLOBAL |
/* L_LOCAL

* Rate-limited (e.g. policer) charge action statement ;

*/ pfe_field_name:
rate_limit_statement: 65 L_NAME |

L_RATE_LIMIT <C L_RATE_LIMITER L_COLON L_HIER_NAME

L_NAME Y ;

US 9,106,581 B1

21 22

identifier: pfe_read_type:
L_NAME L_PACKET_READ |
; L_RESULT_READ
primary_expression: ;
identifier | 5 pfe_write:
base_expression pfe_write_type ‘C L_FIELD L._COLON pfe_field_name
; <’ L_VALUE L._COLON primary_expression ‘)’ “;’
base_expression: ;
constant pfe_write_type:

; 10 L_PACKET_WRITE |
constant: L_RESULT_WRITE
L_NUMBER R
; /%
¥ * FPDL token dictionary
* Conditional expression syntax 5 *
*/ L_BEGIN: {’;
relation: L_END: ‘}’;
L_GTI L_DOT: <,
L_NE | L_AND: ‘&’;
L_EQUIV | 20 L_LOGICAL_AND: ‘&&’;
L_LE| L_OR: ‘I’;
L_GE|I L_LOGICAL_OR: ‘| I’;
L LT L_XOR: ™,
; L_NE: ‘=",
predicate_expression: 25 L_LOGICAL_NOT: !,
var_expression relation var_expression L_EQUIV: ‘="
; L_EQ: =
primary_conditional_expression: L_IF: “if”;
L_LOGICAL_NOT predicate_expression | L_ELSE: ‘else’;
predicate_expression | 30 L_GE: >=";
‘(’ conditional _expression ‘)’ | L_GT: *>’;
L_LOGICAL_NOT °(’ conditional_expression ‘) | L_LE: ‘<=
base_expression L_LT: <,
; L_COLON: ‘",
logical_and_expression: 35 L_BLOCK: ‘block’;
(primary_conditional_expression) (L_LOGICAL_AND L_GOTO: ‘goto’ ;
primary_conditional_expression)* L_EXIT: ‘exit’;
R L_DISCARD: ‘discard’ ;
conditional_expression: L_TREE: ‘tree’ ;
(logical_and_expression) (I._LOGICAL_OR logical_an- 40 L_TREE_T: ‘“tree_t’;
d_expression)* L_ITABLE: ‘itable’;
R L_ITABLE_T: ‘itable_t’;
if_clause: L_RATE_LIMITER: ‘rate_limiter’ ;
L_IF “(’ conditional_expression)’ L_RATE_LIMITER_T: ‘rate_limiter t’;
R 45 L_RATE_LIMIT: ‘rate_limit” ;
if_else: L_COUNTER: ‘counter’ ;
if_clause compound_statement | L_COUNTER_T: ‘counter_t’;
if_clause compound_statement [._ELSE if_else | L_SAMPLER: ‘sampler’ ;
if_clause compound_statement [._EL.SE compound_state- L_LOOKUP: ‘lookup’;
ment 50 L_ARGUMENT: ‘arg’;
R L_PFE: ‘pfe’;
unconditional_control: L_PROGRAM: ‘program’;
L_EXIT L_NAME ;| L_PACKET_READ: ‘packet_read’;
L_DISCARD <;’ | L_PACKET_WRITE: ‘packet_write’ ;
goto_statement 55 L_RESULT _READ: ‘result_read’ ;
R L_RESULT_WRITE: ‘result_write’ ;
var_expr: L_FIELD: ‘field’ ;
primary_expression | L_VALUE: ‘value’;
pfe_read L_INCREMENT: ‘increment’ ;
R 60 L_KEY: key’;
/* L_ITEM: ‘item’ ;
* Basic PFE access statements L_ACTION: ‘action’ ;
*/ L_SCOPE: ‘scope’;
pfe_read: L_GLOBAL: ‘global’;
pfe_read_type ‘C L_FIELD I._COLON pfe_field name 65 L_LOCAL: ‘local’;

) L_UCHAR: ‘u_int8_t’;
R L_BOOLEAN: ‘boolean_t’;

US 9,106,581 B1

23
L_USHORT: ‘u_int16_t’;
L_ULONG: ‘u_int32_t’;
L_FPR: “fpr_t’;
L_FLOW: ‘flow’ ;
L_FLOW_T: ‘flow_t";
L_LIST: “list_t”;
fragment LETTER: ‘a’...‘Z’I'A’. .. “Z’I°_";
fragment DIGIT: ‘0°. .. 9’;
L_NAME_LETTER (LETTERIDIGIT)*;
L_NUMBER: DIGIT+;
L_HIER_NAME: LETTER (LETTER IDIGITI‘’)*(LET-
TER IDIGIT)*;
/*

* End FPDL grammar

*/

FIG. 4 is a block diagram illustrating FPB interface 44 of
FIG. 2 in further detail. FPB interface 44 presents FPDL
interface 46 to daemons 14 to enable the daemons to select an
FPDL program and bind it to an initial set of arguments
90A-90D (“arguments 90”) in one of FPB description struc-
tures 88A-88D (“FPB description structures 88”). FPB inter-
face assigns each of FPB description structures 88 a unique,
system-wide identifier that enables PFEs 20 to distinguish
FPBs 74 from one another and from next hops, for example.
FPB interface 44 stores references to FPB description struc-
tures 88 in respective FPB table identifier entries 86 A-86D of
FPB identifier table 84. Unique identifiers for FPB descrip-
tion structures 88 may specify an index to FPB identifier table
84. Each of arguments 90 is a set of zero or more arguments
for the one of FPDL description structures 82 of FPDL inter-
face 46 referenced by the FPB description structure that
includes the arguments. Arguments 90A, for example, may
contain values for argument variables of an FPDL program.
Each of FPB description structures 88 thus contains a refer-
ence to a textual FPDL program and a respective set of argu-
ments 90 required to instantiate the program.

FPB interface 44 sends FPB description structures 88 and
FPDL interface 46 sends FPDL description structures 82 to
PFEs 20 for compilation by compiler 66 in accordance with
the respective arguments 90 founds within the FPB descrip-
tion structures. FPB-PFE interface 64 installs the compiled
instance of the corresponding program to forwarding path 72
as one of FPBs 74.

Multiple FPB description structures 88 may reference a
single one of FPDL description structures 82. In the illus-
trated example, FPB description structures 88B, 88C refer-
ence FPDL description structure 82B. As a result, control unit
12 may install multiple difterent instances of the single FPDL
program reference by FPDL description structure 82B, with
each instance exhibiting different behavior according to the
particular parameters of FPB description structures 88B,
88C. In addition, FPDL interface 46 need only send one copy
of'each of FPDL description structures 82 to each of the PFEs
20 for compilation. These instances may be reused by com-
piler 66 to support multiple FPB description structures 88 that
reference the instances.

In some aspects, compiler 66 compiles FPDL program text
received in FPDL description structures 82 to platform-inde-
pendent intermediate code object (or representation) that
retains placeholders for arguments received by compiler 66 in
FPB description structures 88. When compiler 66 receives a
new or updated one of FPB description structures 88, the
compiler combines the intermediate code and the respective
arguments 90 the FPB description structure to generate a new
instance of the FPB for installation by FPB-PFE interface 64
to FPBs 74.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 5 is a block diagram illustrating an example program
118 that conforms to a high-level forwarding path description
language that accords with the principles of this disclosure.
Program 118 includes argument variable 120, primitive 122,
counter 124, and block 126. Primitive 122 may represent a
lookup table or lookup tree, for example, and may cause a
device that compiles program 118 to create a corresponding
primitive in forwarding hardware.

Block 126 includes increment statement 138, lookup state-
ment 128, and exit statement 139. During packet processing,
key engines 70 execute block 126 to first execute increment
statement 138 to increment counter 124, which counts every
packet handled by program 118.

Lookup statement 128 defines a lookup template by which
FPB interface may bind forwarding path actions to lookup
items 132 in primitive 122. Items refer to individual entries
within a lookup primitive that corresponds to a possible value
for a field or other property of a packet key. An action is a
section of code executable by key engines when an item to
which the action is bound is matched during a lookup opera-
tion. Daemons 14 may add, modify, and delete item entries
and item-action bindings using FPB interface 44.

The example lookup statement 128 defines an item tem-
plate 132 that specifies a counter 133 and an increment state-
ment that, when compiled and executed, increments counter
133. As aresult, each item for primitive 122 is associated with
a counter that key engines 70 increment when the item
matches the packet being processed. Lookup statement 128
also defines action 134 and default action 136. FPB interface
44 binds each item entry added to primitive 122 to either
action 134 or default action 136. In various examples, lookup
statement 128 may define any number of actions. Default
action 136 provides default code that packet engines execute
for packet key values that do not match any ofthe items added
to the primitive defined by primitive 122. In addition, FPB
interface 44 may bind added item entries to default action
136. Actions 134 and default action 136 include respective
increment statements that, when compiled and executed,
increment respective counters 135, 137. As a result, program
118 tracks the number of packets processed according to each
of'the actions. In addition, default action 136 includes discard
statement 141 that, when compiled and executed, directs key
engines to discard the packet currently being processed.

Key engines 70 execute lookup statement 128 by keying
key 130, defined in lookup statement 128, to the primitive
identified by primitive 122. Lookup statement 128 thus
expresses a complex forwarding path lookup using a simple
syntax provided by the forwarding path definition language.
After executing the lookup statement 128, exit statement 139
directs key engines 70 to proceed to the forwarding path
reference provided by FPB interface 44 for argument variable
120.

The following is program test, an example instance of
program 118:
program test {

arg fpr nextfpr;

itable test_table=table(max: TEST_ENTRIES_MAX);

counter test_inputs=counter(scope: global);

block test_input {

increment(counter: test_inputs);

lookup(table: test_itable, key: packet_read(field: iif)) {

item {
counter test_items=counter(scope: local);
increment(counter: test_items);

action test_accept {
counter test_accepts=counter(scope: local);

US 9,106,581 B1

25

increment(counter: test_accepts);

action default {
counter test_discards=counter(scope: local);
increment(counter: test_discards);
discard;

}

exit nextfpr;

}

In the above example, nextfpr represents argument 120,
test_table is a table that represents primitive 122, and tes-
t_items represents counter 124. Key 130 of lookup statement
128 is parameterized using an iif field of the packet key, and
the lookup primitive is for lookup statement 128 test_itable.
Counters test_items, test_accepts, and test_discards repre-
sent counters 133, 135, and 137, respectively. Lookup opera-
tion 128 defines action 134 (named test_accept) and default
action 136 (named default).

In operation, daemons 14 bind actions to items using FPB
interface 44 by referring to action names and to primitive
names. For example, FPB interface 44 may define methods
fpb_table *fpb_table_find_by_name(fpb *fpb, char *table_
name) and void fpb_table_add(fpb_table *table, int index,
char *action_name). Daemons 14 may invoke FPB interface
44 with the names defined in FPDL program test in the above
example. For example, RPD 34 may obtain a table pointer
value, table_t, to primitive 122 by executing
table_t=tpb_table_find_by_name (fpb_ 1, “test_table”), and
may subsequently add items to table_t and bind the items to
actions by executing fpb_table_add. For example, RPD 34
may add an item for packet property value 10 and bind the
item to action 134 by executing fpb_table_add (table_t, 10,
“test_accept”). FPB interface 44 may define similar interface
methods for lookup tree primitives and for rate limiters. As a
result, daemons executing in the control plane of a network
device can control lookups in the forwarding path without
requiring programs in the data plane to be recompiled and
without requiring new programs to be deployed to the data
plane.

FIG. 6 is a block diagram illustrating a representation of an
example forwarding path block 140 (“FPB 140”) installed
under direction by RPD 34 via FPB interface 44 and FPDL
interface 46 to forwarding path 72 of PFE 20A in accordance
with unified forwarding path block installation and configu-
ration techniques described in this disclosure. Forwarding
path block 140 represents an instance of program 118 of FI1G.
5. In this example implementation, FPB 140 is implemented
using next hops chained together in accordance with the
FPDL code of the corresponding program and in accordance
with item-action binding in lookup table 145, a lookup primi-
tive.

RPD 34 invokes FPB interface 44 to create FPB description
structure 88A, referenced by FPB table identifier entry 86 A,
to include arguments 90A for the program referenced by
FPDL description structure 82A. FPB interface 44 sends FPB
description structure 88A to PFE 20A, which compiles the
referenced program and arguments 90A to FPB 140 and
installs FPB 140 to forwarding path 72. Arguments 90A
include a value for the argument variable nextfpr 150. In
addition, RPD invokes FPB interface 44 to add items 146 A-
146D to primitive 122 and bind the items to one of actions
148A, 148B (“actions 148”) defined for the lookup operation.

During execution, packet engines 70 enter FPB 140 at next
hop 143, which includes microcode to cause the packet
engines increment counter 124. Next hop 143 chains to the

10

15

20

25

30

35

40

45

50

55

60

65

26

lookup operation for primitive 122 (here illustrated as a
table). Primitive 122 includes item entries 144 A, 144B, and
144C for respective packet property values (e.g., key values)
10, 12, and 15. The lookup operation directs execution
threads of packet engines 70 to the respective item structure
146 A-146D (“items 146”) for the matching packet property
value. In the illustrated example, items 146 are each an
instance of item template 132 of FIG. 5 and are each imple-
mented as next hops. For example, packet property value 10
directs packet engines 70 to item 146B for packet property
value 10 specified by item entry 144B. The next hop of item
1468 causes the packet engines to increment counter 133B
for the item. In this way, every one of items 146 has an
associated counter that counts packets that match the packet
property value corresponding to the item.

Each of items 146 is bound, by operation of FPB interface
44, to one of actions 148. For example, item 146B is bound to
action 148A. Action 148B represents an instantiation of
default action 136 defined in program 118 of FIG. 5, and
directs packet engines 70 to increment counter 137 (the dis-
card counter) and to discard the packet being processed.
Action 148A represents an instantiation of action 134 defined
by program 118 of FIG. 5, and directs packet engines 70 to
increment counter 135 according to the next hop. Completion
of action 148A directs packet engines 70 to proceed to the
forwarding path reference (e.g., a next hop location) defined
by the value for argument variable nextfpr 150.

FIG. 7 is a block diagram illustrating a representation of
example forwarding path blocks 150A, 150B (“FPBs 150”)
having installation variables of diverse scope and installed to
forwarding path 72 of PFE 20A in accordance with the
described techniques. Each of FPBs 150 represents an
instance of program 118 of FIG. 5.

Functions that conform to a forwarding path description
language as described herein present an optional scope
parameter that allows developers using the FPDL to manage
the instantiation scope of the corresponding forwarding path
element across separate instances of programs installed to
forwarding path 72. A globally scoped variable is shared
among all instance of programs, while new instances locally
scoped variables are created for each instance of programs. In
the case of globally scoped variables, the PFE-FPB interface
64 creates the instance of the variable when installing the first
instance of a program. PFE-FPB interface 64 configures sub-
sequent instances of the program to use the previously allo-
cated instance of the variable. In instances where every vari-
able for a program is a local variable, PFE-FPB interface 64
instantiates every instance of the program as a complete copy
of all variables. In other words, the program defines a tem-
plate that may be reproduced and installed to forwarding path
72.

In the illustrated example, a counter that instantiates
counter 124 is parameterized using a global scope value to
indicate that the counter is a global counter shared among
various instances of program 118, including FPBs 150. In one
example, program 118 instantiates counter 124 according to
the following instruction: counter foo_counter=counter
(scope: global);. Next hops 143 of each of FPBs 150 indi-
rectly reference (shown as dashed lines) counter 124 to incre-
ment the counter during packet processing. In various
examples, any of the illustrated variables may be declared
global to cause FPBs 150 to share the instance of such vari-
ables, including primitive 122, counters 146, counter 135, and
counter 137 of respective FPBs 150. A globally scoped primi-
tive 122 may enable daemons 14 to instantiate FPBs 150 to
share a single lookup table, for example, simplifying man-
agement of the lookup table and ensuring consistency across

US 9,106,581 B1

27

FPBs 150. Items 146 added to primitive 122, however, are still
bound in this example to only one of FPB 150. As a result,
execution threads of packet engines 70 may jump between
FPBs 150. For example, packet engine 70A may begin
executing FPB 150A, lookup one of items 146 instantiated
within FPB 150B, and thus transfer the execution thread to the
next hop for the identified item within FPB 150B.

FIG. 8A is a block diagram illustrating an example pro-
gram 160 that conforms to a high-level forwarding path
description language that accords with the principles of this
disclosure. Program 160 defines a rate limiter instantiation
variable 164 (“rate limiter 164”) and includes rate-limit state-
ment 168 to define actions 172A, 172B, and default action
174 that may be bound to rate limiter stages (e.g., individual
policers of a rate limiter). Rate-limit statement 168 is param-
eterized using a rate limiter instantiation variable, in this
example, rate limiter 164. A rate limiter function specifies the
number of stages for rate limiter 164. In one example, pro-
gram 160 instantiates rate limiter 164 according to the fol-
lowing instruction: rate_limiter test_limiter=rate_limiter
(stages: 2);. In this example, the rate limiter function specifies
two stages. When packet flow bandwidth exceeds a rate
parameter value for one of the rate limiter stages, packet
engines 70 execute the one of actions 172 or default action
174 bound to the stage having the exceeded rate parameter
value. Default action 174 also provides the action for packet
that belong to packet flows that do not exceed the rate param-
eter values of any stages of rate limiter 164. Exit statement
176 directs key engines 70 to proceed to the forwarding path
reference provided by FPB interface 44 for argument variable
162 also defined in program 160.

FIG. 8B is a block diagram illustrating an example for-
warding path block 180 (“FPB 180”) that is an instance of
program 160 installed to forwarding path 72. FPB 180
includes stages 182A, 182B (“stages 182”) that each police
packet flows according to a rate parameter value for the stage
to implement rate limiter 164. Daemons 14 invoke FPB inter-
face 44 to bind actions defined in program 160 to stages 182
and to set rate parameter values for stages 182. In one
example, FPB interface 44 may define methods fpb_rate_lim-
iter *fpb_rate_limiter_lookup (fpb *{pb, char *limiter_name)
and void fpb_rate_limiter_stage_set (fpb_rate_limiter *lim-
iter, int stage_index, int stage_bandwidth, char *action_
name), where limiter_name is a parameter for a variable name
of rate limiter 164 in program 160 and action_name is a
parameter for names of actions 172, default action 174
defined in rate-limit statement 168 of program 160.

Packet flows arrive at stage 182A, which determines
whether the packet flow bandwidth exceeds the rate param-
eter value for stage 182A. If so, packet engines 70 execute
action 172 A (here implemented as a next hop) bound to stage
182A by operation of FPB interface 44. If not, stage 182B
determines whether the packet flow bandwidth exceeds the
rate parameter value for stage 182B. If so, packet engines 70
execute action 172B (here implemented as a next hop) bound
to stage 182B by operation of FPB interface 44. If not, packet
engines 70 execute default action 174 (here implemented as a
next hop). Each of stages 182 may each represent a hardware
policer within an ASIC of a packet forwarding engine.

FIG.91s aflowchart illustrating an example mode of opera-
tion for control unit 12 and PFE 20A of FIG. 2 to create
forwarding structures using techniques described in this dis-
closure. Initially, one of daemons 14 identifies an FPDL pro-
gram to instantiate using the FPDL program name and also
creates an argument set with values for arguments exposed in
a program interface for the FPDL program (200). Daemons
14 then invoke FPB interface 44 to create a forwarding path

40

45

28

block description structure that includes a reference to the
identified program (e.g., an FPDL description structure) and
the set of argument values (202). FPB interface 44 may pro-
vide the following methods for creation, management, and
deletion of forwarding path blocks:

fpb *fpb_create(char *fpdl_name,
fpb_args

*_fpb_args);

void fpb_delete(fpb *_fpb);

fpr fpb_get_fpr(fpb *_fpb);

fpb *fpb_lookup(fpb_id_1Ipb_id);

The method fpb_create creates and returns a reference to a
new forwarding path block given a program name, a reference
name for the one of PFEs 20 on which to create the forwarding
path block, and a set of arguments. fpb_get_fpr returns a
forwarding path reference that may be embedded within other
forwarding path blocks as a value for an argument variable,
for example. In this way, daemons 14 may chain together
multiple forwarding path blocks 74 within forwarding path
72.

Once daemons 14 create an FPB description structure, FPB
interface 44 sends the FPB description structure to PFE-FPB
interface 64 and directs FPDL interface 46 to send the FPDL
description structure for the referenced program to PFE-FPB
interface 64 (204). Compiler 66 compiles the referenced pro-
gram according to the set of arguments within the received
FPB description structure to generate a new forwarding path
block (206). PFE-FPB interface 64 then installs the new for-
warding path block to forwarding path 72 as one of FPBs 74
(208).

FIG. 10 is a flowchart illustrating an example mode of
operation for control unit 12 and PFE 20A of FIG. 2 to
populate a lookup primitive with items using techniques
described in this disclosure. One of daemons 14 identifies a
forwarding path block in FPBs 74 that references one of
primitive 76 to perform a lookup operation (220). The dae-
mon may, for example, maintain a reference to the forwarding
path block returned upon invoking FPB interface 44 or obtain
a reference to the forwarding path block by providing an FPB
identifier to FPB interface 44. The daemon next identifies a
primitive name in the identified forwarding path block that is
defined as a variable name in the program for the forwarding
path block (222). The daemon invokes FPB interface 44 to
add an item for a particular lookup value for the identified
primitive (224). In addition, the daemon invokes FPB inter-
face 44 to bind the newly added item to a particular action
defined in the program for the forwarding path block (226).

Forwarding path 72 having been modified, packet engines
70 execute the forwarding path to process packets accord-
ingly. Packet engines 70 process packets having property
value that match the added item using the action of the for-
warding path block that is bound to the item in the primitive
(228).

The techniques described in this disclosure may be imple-
mented, at least in part, in hardware, software, firmware or
any combination thereof. For example, various aspects of the
described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays (FP-
GAs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
Theterm “processor” or “processing circuitry” may generally
refer to any of the foregoing logic circuitry, alone or in com-
bination with other logic circuitry, or any other equivalent
circuitry. A control unit comprising hardware may also per-
form one or more of the techniques of this disclosure.

char *pfe_name,

US 9,106,581 B1

29

Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as
discrete but interoperable logic devices. Depiction of differ-
ent features as modules or units is intended to highlight dif-
ferent functional aspects and does not necessarily imply that
such modules or units must be realized by separate hardware
or software components. Rather, functionality associated
with one or more modules or units may be performed by
separate hardware or software components, or integrated
within common or separate hardware or software compo-
nents.

The techniques described in this disclosure may also be
embodied or encoded in a computer-readable medium, such
as a non-transitory computer-readable medium or computer-
readable storage medium, containing instructions. Instruc-
tions embedded or encoded in a computer-readable medium
may cause a programmable processor, or other processor, to
perform the method, e.g., when the instructions are executed.
Computer readable storage media may include random
access memory (RAM), read only memory (ROM), program-
mable read only memory (PROM), erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), flash memory, a
hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer-readable storage
media. It should be understood that the term “computer-
readable storage media” refers to physical storage media, and
not signals or carrier waves, although the term “computer-
readable media” may include transient media such as signals,
in addition to physical storage media.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

The invention claimed is:

1. A method comprising:

sending program text for a program that conforms to a
syntax for a high-level forwarding path description lan-
guage (FPDL) from a control unit of a network device to
a forwarding component of the network device, wherein
the program text defines a forwarding path element;

compiling the program text with the forwarding compo-
nent to a platform-independent intermediate representa-
tion;

compiling, in response to a request by the control unit, the
intermediate representation with the forwarding compo-
nent to generate a forwarding path block having one or
more forwarding structures for execution by the for-
warding component to process packets;

installing the forwarding path block to an internal packet
forwarding path of the forwarding component, the for-
warding path element exclusively associated with the
forwarding path block when the program text defines a
scope for the forwarding path element as local and non-
exclusively associated with the forwarding path block
when the program text defines the scope for the forward-
ing path element as global;

receiving a packet with the forwarding component; and

processing, by the forwarding component, the received
packet by executing the forwarding path block including
the forwarding path element.

2. The method of claim 1, wherein the forwarding path

element is one of a lookup tree, a lookup table, a rate limiter,
and a counter.

10

15

20

25

30

35

40

45

50

55

60

65

30

3. The method of claim 1,

wherein to define the forwarding path element the program
text defines an instantiation variable for the forwarding
path element, and

wherein the program text includes a function that directs
the network device to allocate the forwarding path ele-
ment according to function parameters.

4. The method of claim 1, further comprising:

instantiating additional instances of the forwarding path
element for additional forwarding path blocks generated
from the program when the program defines the scope
for the forwarding path element as local; and

reusing the instance of the forwarding path element with
additional forwarding path blocks generated from the
program when the program defines the scope for the
forwarding path element as local.

5. The method of claim 1,

wherein the program defines one or more actions for a
lookup operation on a packet property, and

wherein the forwarding path element comprises a lookup
primitive that includes one or more items that each binds
apacket property value to one of the actions, the method
further comprising:

after installing the forwarding path block to the internal
packet forwarding path of the forwarding component,
sending a message from the control unit to the forward-
ing component, the message including a first packet
property value and a reference for a first action of the one
or more actions; and

in response to receiving the message with the forwarding
component, adding to the lookup primitive a first item
that binds the first packet property value to the first
action.

6. A network device comprising:

a forwarding component comprising:

an interface card that receives a packet;

a compiler;

a programming interface;

a key engine; and

an internal packet forwarding path comprising program-
mable, executable microcode that determines pro-
cessing of the packet; and

a control unit comprising:

a computer-readable storage medium that stores pro-
gram text for a program that conforms to a high-level
forwarding path description language (FPDL); and

a forwarding component interface that sends program
text for the program to the forwarding component,

wherein the programming interface receives the program
text,

wherein the compiler compiles the program text to a plat-
form-independent intermediate representation,

wherein the compiler, in response to a request by the con-
trol unit, compiles the intermediate representation to
generate a forwarding path block having one or more
forwarding structures for execution by the forwarding
component to process the packet,

wherein the programming interface installs the forwarding
path block to the internal packet forwarding path of the
forwarding component, the forwarding path element
exclusively associated with the forwarding path block
when the program text defines a scope for the forwarding
path element as local and non-exclusively associated
with the forwarding path block when the program text
defines the scope for the forwarding path element as
global, and

US 9,106,581 B1

31

wherein the key engine processes the packet by executing
the forwarding path block including the forwarding path
element.

7. The network device of claim 6, wherein the forwarding

path element is one of a lookup tree, a lookup table, a rate
limiter, and a counter.

8. The network device of claim 6,

wherein to define the forwarding path element the program
text defines an instantiation variable for the forwarding
path element, and

wherein the program text includes a function that directs
the network device to allocate the forwarding path ele-
ment according to function parameters.

9. The network device of claim 6,

wherein the programming interface instantiates additional
instances of the forwarding path element for additional
forwarding path blocks generated from the program
when the program defines the scope for the forwarding
path element as local, and

wherein the programming interface instantiates reuses the
instance of the forwarding path element with additional
forwarding path blocks generated from the program
when the program defines the scope for the forwarding
path element as local.

10. The network device of claim 6,

wherein the program defines one or more actions for a
lookup operation on a packet property, and

wherein the forwarding path element comprises a lookup
primitive that includes one or more items that each binds
a packet property value to one of the actions,

wherein after the programming interface installs the for-
warding path block to the internal packet forwarding
path of the forwarding component, the forwarding com-
ponent interface sends a message to the programming
interface, the message including a first packet property
value and a reference for a first action of the one or more
actions,

wherein the programming interface, in response to receiv-
ing the message with the forwarding component, adds to
the lookup primitive a first item that binds the first packet
property value to the first action.

11. A method comprising:

sending program text for a program that conforms to a
syntax for a high-level forwarding path description lan-
guage (FPDL) from a control unit of a network device to
a forwarding component of the network device, wherein
the program text includes an argument variable and a
conditional statement that includes a condition that
depends upon a value of the argument variable, the con-
ditional statement specifying first and second alternative
sections of FPDL instructions for the program;

compiling the program text with the forwarding compo-
nent to a platform-independent intermediate representa-
tion;

sending a program argument for the argument variable
from the control unit to the forwarding component;

compiling, in response to a request by the control unit and
using the first alternative section when a value of the
program argument causes the condition to evaluate as
true, the intermediate representation to generate a for-
warding path block having one or more forwarding
structures for execution by the forwarding component to
process packets;

compiling, in response to a request by the control unit and
using the second alternative section when the value of
the program argument causes the condition to evaluate
as false, the intermediate representation to generate the

10

15

32

forwarding path block having one or more forwarding
structures for execution by the forwarding component to
process packets;

installing the forwarding path block to an internal packet
forwarding path of the forwarding component;

receiving a packet with the forwarding component; and

processing, by the forwarding component, the received
packet by executing the forwarding path block.

12. The method of claim 11, further comprising:

generating a forwarding path block description structure
with the control unit, wherein the forwarding path block
description structure contains the program argument and
specifies the program,

wherein sending a program argument for the argument
variable from the control unit to the forwarding compo-
nent comprises sending the forwarding path block
description structure from the control unit to the for-
warding component.

13. The method of claim 11, wherein the forwarding com-

20 ponent comprises a microprocessor and an application-spe-

25

30

35

40

45

50

55

60

cific integrated circuit (ASIC) having one or more key
engines, the method further comprising:

compiling the intermediate representation with the micro-
processor to generate the forwarding path block;

installing the forwarding path block with the microproces-
sorto the internal packet forwarding path of the forward-
ing component; and

executing the forwarding path block according to proper-
ties of the packet with the key engine.

14. The method of claim 11,

wherein the program defines one or more actions for a
lookup operation on a packet property, and

wherein the program specifies a lookup primitive that
includes one or more items that each binds a packet
property value to one of the actions, the method further
comprising:

allocating a lookup primitive data structure within the for-
warding component for the specified lookup primitive;

compiling the intermediate representation to include the
lookup primitive data structure within the internal
packet forwarding path;

after installing the forwarding path block to the internal
packet forwarding path of the forwarding component,
sending a message from the control unit to the forward-
ing component, wherein the message includes a first
packet property value and a reference for a first action of
the one or more actions; and

in response to receiving the message with the forwarding
component, adding to the lookup primitive a first item
that binds the first packet property value to the first
action.

15. The method of claim 11,

wherein the intermediate representation that includes
placeholders for argument variables, the method further
comprising:

by the forwarding component and after receiving addi-
tional program arguments with the forwarding compo-
nent, linking and compiling the intermediate represen-
tation by populating the placeholders for arguments
variables with corresponding program arguments of the
additional program arguments.

16. A network device comprising:

a forwarding component comprising:
an interface card that receives a packet;
a compiler;
a programming interface;
a key engine; and

US 9,106,581 B1

33

an internal packet forwarding path comprising program-
mable, executable microcode that determines pro-
cessing of the packet; and

a control unit comprising:

a computer-readable storage medium that stores pro-
gram text for a program that conforms to a high-level
forwarding path description language (FPDL),
wherein the program text includes an argument vari-
able and a conditional statement that includes a con-
dition that depends upon a value of the argument
variable, the conditional statement specifying first
and second alternative sections of FPDL instructions
for the program; and

a forwarding component interface that sends the pro-
gram text for the program and a program argument for
the argument variable to the forwarding component,

wherein the programming interface receives the program
text and program argument,

wherein the compiler compiles the program text to a plat-
form-independent intermediate representation,

wherein the compiler, in response to a request by the con-

trol unit and using the first alternative section when a

value of the program argument causes the condition to

evaluate as true, the intermediate representation to gen-
erate a forwarding path block having one or more for-
warding structures for execution by the forwarding com-
ponent to process packets,

wherein the compiler, in response to a request by the con-
trol unit and using the second alternative section when
the value of the program argument causes the condition
to evaluate as false, the intermediate representation to
generate the forwarding path block having one or more
forwarding structures for execution by the forwarding
component to process packets,

wherein the programming interface installs the forwarding
path block to the internal packet forwarding path of the
forwarding component, and

wherein the key engine processes the packet by executing
the forwarding path block.

17. The network device of claim 16,

wherein the forwarding component interface generates a
forwarding path block description structure, wherein the
forwarding path block description structure contains the
program argument and specifies the program, and

wherein to send the program argument for the argument
variable to the forwarding component the forwarding

10

15

20

25

30

35

40

45

34

component interface sends the forwarding path block
description structure to the forwarding component.

18. The network device of claim 16,

wherein the forwarding component comprises a micropro-
cessor and an application-specific integrated circuit
(ASIC) having one or more key engines,

wherein the microprocessor compiles the intermediate rep-
resentation to generate the forwarding path block,

wherein the microprocessor installs the forwarding path
block to the internal packet forwarding path of the for-
warding component, and

wherein the key engine executes the forwarding path block
according to properties of the packet.

19. The network device of claim 16,

wherein the program defines one or more actions for a
lookup operation on a packet property, and

wherein the program specifies a lookup primitive that
includes one or more items that each binds a packet
property value to one of the actions,

wherein the programming interface allocates a lookup
primitive data structure within the forwarding compo-
nent for the specified lookup primitive,

wherein the compiler compiles the intermediate represen-
tation to include the lookup primitive data structure
within the internal packet forwarding path,

wherein the forwarding component interface, after install-
ing the forwarding path block to the internal packet
forwarding path of the forwarding component, sends a
message to the programming interface, wherein the mes-
sage includes a first packet property value and a refer-
ence for a first action of the one or more actions; and

wherein the programming interface, in response to receiv-
ing the message, adds to the lookup primitive a first item
that binds the first packet property value to the first
action.

20. The network device of claim 16,

wherein the intermediate representation that includes
placeholders for argument variables,

wherein the forwarding component, after receiving addi-
tional program arguments, links and compiles the inter-
mediate representation by populating the placeholders
for arguments variables with corresponding program
arguments of the additional program arguments.

#* #* #* #* #*

